Characterizing Wavelet Coefficient Decay of Discrete-Time Signals

نویسنده

  • H. Führ
چکیده

We present an intrinsically discrete-time characterization of wavelet coefficient decay. To be more precise, let f = (f(n))n∈Z be a sequence and denote by (dj,l)j≥1,l∈Z the coefficients obtained by passing f through a subsampled wavelet filter bank. Then it is common practice to relate the decay properties of (dj,l) to continuous-time smoothness spaces such as the homogeneous Besov spaces Ḃα p,q(R). We discuss an alternative approach using only discrete-time notions, showing that under suitable assumptions wavelet coefficient decay characterizes precisely the elements of the discrete-time Besov spaces defined by R.H.Torres [12]. The results do not follow as trivial consequences of the continuous-time theory, and seem well adapted to practical applications due to their fully discrete-time nature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Classifier for Characterizing Motor Unit Action Potentials in Diagnosing Neuromuscular Disorders

Background: The time and frequency features of motor unit action potentials (MUAPs) extracted from electromyographic (EMG) signal provide discriminative information for diagnosis and treatment of neuromuscular disorders. However, the results of conventional automatic diagnosis methods using MUAP features is not convincing yet.Objective: The main goal in designing a MUAP characterization system ...

متن کامل

Wavelet packet computation of the Hurst exponent

Wavelet packet analysis was used to measure the global scaling behaviour of homogeneous fractal signals from the slope of decay for discrete wavelet coefficients belonging to the adapted wavelet best basis. A new scaling function for the size distribution correlation between wavelet coefficient energy magnitude and position in a sorted vector listing is described in terms of a power law to esti...

متن کامل

A combined Wavelet- Artificial Neural Network model and its application to the prediction of groundwater level fluctuations

Accurate groundwater level modeling and forecasting contribute to civil projects, land use, citys planning and water resources management. Combined Wavelet-Artificial Neural Network (WANN) model has been widely used in recent years to forecast hydrological and hydrogeological phenomena. This study investigates the sensitivity of the pre-processing to the wavelet type and decomposition level in ...

متن کامل

Pervasive white and colored noise removing from magnetotelluric time series

Magnetotellurics is an exploration method which is based on measurement of natural electric and magnetic fields of the Earth and is increasingly used in geological applications, petroleum industry, geothermal sources detection and crust and lithosphere studies. In this work, discrete wavelet transform of magnetotelluric signals was performed. Discrete wavelet transform decomposes signals into c...

متن کامل

Subsea Free Span Pipeline Damage Detection Based on Wavelet Transform under Environmental Load

During their service life, marine pipelines continually accumulate damage as a result of the action of various environmental forces. Clearly, the development of robust techniques for early damage detection is very important to avoid the possible occurrence of a disastrous structural failure. Most of vibration-based damage detection methods require the modal properties that are obtained from mea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005